
Land perspective on surface energy 
budget 

 

David Lawrence 
 

Co-chair of Land Model Working Group 
Climate and Global Dynamics Lab 

Terrestrial Sciences Section 
dlawren@ucar.edu 

 

NCAR is sponsored by the National Science Foundation 



The interdisciplinary evolution of land models 



The interdisciplinary evolution of land models 
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to the atmosphere 

Land as an integral component 
of the Earth System 

Figure: Fisher, Lawrence, Bonan, Clark, unpublished 



Surface Energy Balance 
 

S! - S" + L! - L" = λE + H + 
G  

 

S!, S" are down(up)welling solar radiation,  

L!, L" are up(down)welling longwave rad, 

λ is latent heat of vaporization,  

E is evaporation, 

H is sensible heat flux 

G is ground heat flux 
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Surface albedo a function of  

–  Land type (vegetated, glacier, lake, urban) 

–  Plant functional type (leaf and stem 
reflectance and transmission, leaf angle) 

–  Snow albedo 

–  Snow cover fraction 

–  Snow age (snow grain size) 

–  Snow darkening due to aerosols 
(SNICAR) 

–  Vertical absorption of solar 

–  Soil color and soil moisture 

–  Solar zenith angle 

–  Amount of direct vs diffuse solar radiation 

–  Amount of visible vs IR solar radiation 



Snow, Ice, and Aerosol Radiative Model (SNICAR) 

 
–  Snow darkening from deposited black carbon, mineral dust, and organic matter 
–  Vertically-resolved solar heating in the snowpack 
–  Snow aging (evolution of effective grain size) based on: 

•  Snow temperature and temperature gradient 
•  Snow density 
•  Liquid water content and  
•  Melt/freeze cycling 

Flanner et al (2007), JGR 
Flanner and Zender (2006), JGR 
Flanner and Zender (2005), GRL 



Biases in simulated land albedo 

CLM5 – CERES: Ann mean 

CLM5 - GEWEX.SRB: Ann mean 

CLM5 
CERES 

CLM5 
GEWEX.SRB 



Image: Frans Lanting/Robert Harding Picture Library 

Land-use and land-cover change Snow-albedo feedback 



Flanner et al., 2011  



•  SAF	
  is	
  a	
  posi*ve	
  feedback	
  climate	
  
mechanism	
  and	
  an	
  important	
  driver	
  
of	
  regional	
  climate	
  change	
  over	
  the	
  
Northern	
  Hemisphere	
  (NH)	
  
extratropics.	
  

•  Models	
  exhibit	
  large	
  variability	
  in	
  
the	
  strength	
  of	
  this	
  process.	
  

•  Intermodel	
  spread	
  in	
  SAF	
  explains	
  
40-­‐50%	
  of	
  the	
  variability	
  in	
  
projected	
  spring	
  NH	
  land	
  warming.	
  

SNOW  ALBEDO  FEEDBACK  (SAF)


Initial 
warming: 
enhanced 
by +ve 

feedback 

Snow melt  

Decreased 
surface 
albedo 

Increased 
insolation 
absorbed 

Fletcher et al. 2012 



•  Most	
  climate	
  models	
  struggle	
  to	
  capture	
  the	
  !ming	
  and/or	
  magnitude	
  of	
  seasonal	
  
changes	
  in	
  albedo	
  over	
  both	
  boreal	
  forest	
  and	
  Arc*c	
  tundra	
  regions.	
  

•  For	
  CCSM4,	
  albedo	
  decreases	
  too	
  early	
  in	
  winter	
  because	
  of	
  an	
  issue	
  with	
  how	
  
canopy	
  snow	
  is	
  parameterized,	
  leading	
  to	
  weak	
  SAF.	
  

LARGE  BIASES  IN  SNOW-­‐COVERED  SURFACE  ALBEDO


Thackeray et al., 2015	
  

Boreal Forest Arctic Tundra 

Maximum monthly mean 
climatological (1980-2005) 

surface albedo over the 
boreal forest and Arctic 
Tundra. Color coding 
shows when the peak 

albedo occurs. 
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Snow-albedo feedback in CESM/CLM: Impact of canopy snow processes 



REDUCTION  OF  SAF  BIAS  IN  CLM5


Monthly climatological change in albedo across the boreal 
forest (>75%) for the CMIP5 median, and several versions 

of CLM. The dark gray region captures the interquartile 
range for the CMIP5 ensemble. The light gray box shows 

when observational uncertainty is largest. 

Model	
   Boreal	
  Spring	
  SAF	
  (%/K)	
  
CCSM4	
   -­‐0.60	
  
CLM4	
   -­‐0.64	
  
CLM4.5	
   -­‐0.68	
  
CLM5	
   -­‐0.83	
  
MODIS	
   -­‐0.87	
  





Image: Frans Lanting/Robert Harding Picture Library 

Land-use and land-cover change 



Multiple competing influences of forests 

 Not all forest ecosystems have 
the same impact on climate 

Bonan (2008) Science 320:1444-1449  Credit: Nicolle Rager Fuller, National Science Foundation  



Multiple competing influences of forests 

 Differences in ecosystem functioning have 
implications for land climate 

mitigation policy 

Bonan (2008) Science 320:1444-1449  Credit: Nicolle Rager Fuller, National Science Foundation  
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Land Use  
Change 
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Land-cover / land-use change (prescribed) 



P. Lawrence et al. (2012) J Climate 25:3071-3095 

Historical land use & land cover change, 1850-2005 

#  Loss of tree cover and 
increase in cropland 

#  Farm abandonment and 
reforestation in eastern U.S. 
and Europe 

#  Extensive wood harvest 

 
Impact of LULCC on climate 
through 
•  Albedo 
•  Surface roughness 
•  Surface heat flux partitioning 
•  Carbon exchange 
 

Historical LULCC 

Change in tree and crop cover (% of grid cell) 



| | 

Meier et al. (submitted) 

Albedo  



Development efforts related to radiation 
 
 Plant competition for light 



Natural vegetation patterns imply subgrid controls from                                
soil moisture convergence, slope, and aspect 



Representative hillslopes (CLM5 option) 

Independent 
(parallel) 
subsurface flow 
inputs to riparian 
zone 

Serial subsurface 
flow inputs to 
riparian zone 

Swenson et al., in prep 
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Questions 



SW Down 
LW down 

SW Up 
RNet 

Land surface energy budget terms 

•  Compared across ~160 FLUXNET sites, LSMs, GCMs and reanalyses 
struggle to reproduce even the global pattern of annual means.  

Dirmeyer et al.  (2018; 
JHM) 

•  There appears to be a real 
problem with LSM surface 
albedos (blue) – is this a site-
grid scaling problem or more 
serious?  

•  Basic radiation errors impair 
simulation of surface sensible 
and latent heat fluxes, and 
thus L-A feedbacks. 

Circles: 
NCAR 
models 



Radiative transfer uses the 
two-stream approximation 
(Dickinson, Sellers) to 
determine reflected and 
absorbed solar radiation 

Two-stream radiative transfer 

Unscattered 
direct beam 

Scattered 
direct beam 

Slide courtesy G. Bonan 



Urban Model 
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Land modelling, why?     Land-atmosphere interactions 

Koster et al., 2010 

30-45 day forecast conditioned on SM 

•  When, where, and by how much do land 
fluxes influence atmosphere, surface 
temperature, clouds, precipitation, etc.? 

•  Land-driven predictability 

–  Significant skill, especially when 
conditioned on amplitude of initial soil 
moisture anomaly 

–  Increased land-atmosphere coupling in 
future warmer climate, increased land-
driven skill? 

•  Land influence on extremes  



•  Land feedbacks on droughts and floods 

•  Snow-albedo and snow-soil T feedbacks  

•  Water and food security  

–  >1/6th world population dependent on 
water from seasonal snowpacks 

•  Water – plant interactions 

–  Plant water use efficiency likely to 
increase with CO2 

•  Streamflow prediction 

Image: Kimon Maritz 

NH snow cover 
anomaly (Rutger’s  
Global Snow Lab) 

Stewart et al.,  
2005 

Red - Earlier runoff 
Blue - Later runoff 



Image: Frans Lanting/Robert Harding Picture Library 
Thierry, Lawrence, et al., 2017 

Irrigation mitigates heat extremes 

Venter et al., 2016 

•  ~25% non-ice land area undergone 
anthropogenic land-cover change 

•  ~80% non-ice land area under some form 
of land management 

•  Regionally, LULCC as impactful on 
surface climate as greenhouse gases 

•  ~1/3 of direct historic carbon emissions 
(180 ± 80PgC from land use, ~400 PgC 
from fossil fuel and cement),                      

•  Deforestation: loss of Additional Sink 
Capacity yields indirect C impact 

•  Effectiveness of afforestation and biofuels 
for CO2 mitigation 

•  Urban-rural differences in climate change 
impacts, e.g. ,heat stress 

Land modeling why?     Land-use and land-cover change 

since 1993 



Land modeling, why?       Carbon and ecology 

•  Carbon and nitrogen cycle interactions 
and their impact on long term trajectory 
of terrestrial carbon sink 

•  High uncertainty in projected land C sink 
–  Emissions driven RCP8.5:                             

795 to 1140 ppm (source of ±1.2C 
uncertainty on top of 3.7C projected 
change) 

•  Vulnerability of ecosystems to climate 
change as well as natural and human 
disturbances  

•  Ecosystem services 

•  Ecosystem management to mitigate 
climate change 

Image: Joel Vodell 
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Lawrence et al., 2011; Lawrence et al., 2018 



P = ES + ET + EC + R +  

       (∆Wsoi+∆Wsnw +∆Wsfcw +∆Wcan) / ∆t 
 

P  is rainfall/snowfall,  

ES is soil evaporation,  

ET is transpiration,  

EC is canopy evaporation,  

R is runoff (surf + sub-surface), 

∆Wsoi / ∆t, ∆Wsnw / ∆t, ∆Wsfcw / ∆t, ∆Wcan / ∆t, 
are the changes in soil moisture, surface 
water, snow, and canopy water over a 
timestep 

… and the Surface Water Balance 



Terrestrial water and energy cycles intricately linked 

“The ability of a land-surface scheme to model evaporation correctly depends crucially 
on its ability to model runoff correctly.  The two fluxes are intricately related 
through soil moisture.”   

(Koster and Milly, 1997). 
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Runoff and evaporation both 
vary non-linearly with soil 
moisture 
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Land model complexity: Snow model example 

•  Up to 10-layers of varying thickness 

•  Represented processes  

•  Accumulation and fresh snow density  f (T, wind) 

•  Snow melt and refreezing 

•  Snow aging  

•  Water and energy transfer across snow layers 

•  Snow compaction 

•  destructive metamorphism due to temperature and wind 

•  overburden 

•  melt-freeze cycles 

•  Sublimation  

•  Aerosol (black carbon, dust) deposition 

•  Canopy snow storage and unloading 

•  Canopy snow radiation 

•  Snow burial of vegetation 

•  Snow cover fraction  

•  Missing processes 

•  Blowing snow 

•  Subgrid variations in snow depths 

•  Depth hoar 

,,, , , ,ice i i iliq iN w w z TΔ

State Variables 



Plant Functional Type Parameters 

•  Optical properties (visible and 
near-infrared):  

–  Leaf angle 

–  Leaf reflectance 

–  Stem reflectance 

–  Leaf transmittance 

–  Stem transmittance 

•  Fire: 

–  Combustion completeness 

–  Fire mortality 

•  Land models are parameter 
heavy!!! 

•  Morphological properties: 

–  Leaf area index (annual cycle) 

–  Stem area index (annual cycle) 

–  Leaf dimension, leaf orientation 

–  Roughness length/displacement height 

–  Canopy top and bottom height 

–  Root depth and distribution 

•  Photosynthetic parameters: 

–  Specific leaf area  

–  m (slope of conductance-photosynthesis relationship) 

–  Vcmax (maximum rate of carboxylation) 

–  Leaf carbon to nitrogen ratio 

–  Fraction of leaf nitrogen in Rubisco 

–  Root conductivity, plant conductivity 
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